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LETTER TO THE EDITOR 

N = 4 super-Liouville equation 

E A Ivanov and S 0 Krivonos 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980, Dubna, 
USSR 

Received 24 May 1984 

Abstract. We present a superfield N = 4 superextension of the Liouville equation with 
gauge SU(2) xSU(2) symmetry. It is formulated in terms of real quaternionic N = 4  
superfield subjected to certain Grassmann analyticity constraints and possesses a zero- 
curvature representation on superalgebra s ~ (  I ,  112). A possible relevance of the obtained 
system to the SU(2)-superstring is discussed. 

Supersymmetric extensions of the two-dimensional Liouville equation 

(U+- = a+a-u, [m] = L- ' )  ( 1 )  

are interesting mainly in view of their possible relation to superstrings and four- 
dimensional supergauge theories (Ademollo et a1 1976a, b, Brink and Schwarz 1977, 
Polyakov 1981). 

The simplest N = 1 extension of equation ( 1 )  was treated from different standpoints 
(Polyakov 1981, Chaichian and Kulish 1978, Leznov et a1 1980). The superfield 
(SF) theory of the N = 2 super-Liouville equation (Lagrangian, general solution, zero- 
curvature representation) has been worked out in our paper (Ivanov and Krivonos 
1983). It is described by a complex analytic N = 2  SF and possesses internal gauge 
U+( l )  x K ( 1 )  symmetry. 

Here we present the next N = 4 superextension of equation (1) with the nonabelian 
gauge group SU(2)+ x SU-(2). This extension is unique in that the relevant supermulti- 
plet (4 +4  components on-shell) is the maximally possible one containing the dilation 
u ( x )  and including no fields with anomalous conformal dimensions. The basic object 
is a real quaternionic N = 4 SF subjected to irreducibility constraints of the hypermulti- 
plet type (Fayet 1976, Sohnius et a1 1981, Sohnius 1978). We analyse the invariance 
properties of the system obtained and construct for it a zero-curvature representation 
in N = 4 superspace (ss). It is demonstrated that the N = 4 super-Liouville equation 
exhibits invariance (at the classical level) with respect to the transformation of an 
infinite dimensional SU(2) string superalgebra (SA) of Ademollo et a1 (1976~).  

We exploit the same general group-theoretic approach as in the N = 2 case (Ivanov 
and Krivonos 1983). It deals with nonlinear realisations of infinite-dimensional 
(super)symmetries and has been explained in our previous papers (Ivanov and Krivonos 
1983, 1984 a, b). 

The key points of our method consist of choosing an infinite dimensional SA %, 
for which the nonlinear realisation is constructed, and secondly its subalgebras: the 
vacuum stability subalgebra 2%' and zero-curvature representation subalgebra go. In 
the present case, 3 is taken to be a direct sum of two contact SA'S W!( 112) with the 

,2 e-2u U+- = 
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following structure relations (Ademollo et al 1976c)t: 

i[L:, L?] = ( n  - m)L:+"', 

{G:, ,  etp}= - 2 6 ~ L : + ' + 2 ( r - s ) ( c r k ) ~ T ; = " ,  

i[L:, T i * ]  = -pTP,Z", 

i[L:, GL,] = (fn - r )GLT,  

i[ Ti,, GL,] = -L( 2 uk)!Gb?I 

[ Ti*, TI,] = EkijT;:', 

{GL,, G;,} = 0, 

{ G:", GtP} = 0, 

1 1 3  (n ,m=-1,0,1,  . . .  ; r , s = - j , j , j  , . . .  ;p , l=O,1 ,2  , . . .  ; a , p = 1 , 2 ; i , j , k = 1 , 2 , 3 ) .  The 
even sector of the s ~ ( 2 )  includes, besides the conformal algebra of the two-dimensional 
world W,( 1 )  = { L:} two gauge algebras { Ti,.) with the local part su,(2)Osu2(2) = {TO,,}. 
The algebra su+(2)Osu-(2) is the automorphism algebra of the rigid N = 4  SA with 
generators L;' (translations), U = Lo,- L! (so( 1, 1)-pseudorotations) and GiL", 

Further, one constructs by % the supergroup G and considers a nonlinear realisation 
of G in its certain coset space G/H.  The coset with a minimal number of essential 
parameters (i.e. those through which all others can be covariantly expressed) corre- 
sponds to the choice of H = SO( 1, 1 )  X SU(2) with generators U, Tok = E+ + c-. The 
essential parameters are the N = 4 ss coordinates x*, ea*, 8: and SF'S u(x, e, 8), 
cpk(x, 8, 8) associated, respectively, with generators L;',  G;:12, GiCr/' and Lo, + L!, 

The next steps are to define the Cartan one-form R on the SA % and to perform a 
covariant reduction of R to a one-form flyd which obeys the zero-curvature condition 
on certain SA g0c 9: 

(supertranslations). 

Tok+-Tok .  

The zero-curvature representation (4) follows from the reduction constraint (3) and 
the standard Maurer-Cartan equation for the initial one-form R. We choose as go 
the N = 4 superextension su( 1, 112) of the algebra sI(2, R ) ,  with the following generators 

where U, R,, R- form sl(2, R ) .  In what follows we need to know explicitly only the 
spinor components of flyd. 

The covariant reduction constraint (3) produces an infinite set of the Pfaff's 
equations for the components of ayd. They express the SF parameters of G /H in 

t The whole SU(2) string SA (Ademollo et a/ 1976c) contains in addition the generators with any negative 
conformal dimensions and also c-number central charges of the pure quantum origin. 
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terms of u(x, 8, 6)  and cpi(x, 8, 6)  and result, owing to (4), in the dynamical constraints 
on U, pi which are just the desirable N = 4 extension of the Liouville equation: 

alolq?' = 0, 

ad"(q9;q-y = o  
G+(& = 0 

B:(q-'G-yq)z +4im4; =o. 

Here, U and pi  are combined into the single real quaternionic SF: 

qf (e-u-ivu)t, 

4: (e-u+iv,u)f  = B6 Y 
-&ay& q s ,  

and N = 4 covariant spinor derivatives are introduced: 

9: = io"'a/ax* +a/a6:, a,, = ie,'a/ax' +a/ae"*, 
(9) { 9:, G*p} = 2 i ~ ;  a/ax*. 

Relations (6) are the irredicibility conditions for q t .  They directly generalise the 
Grassmann analyticity conditions of the N = 2 case (Ivanov and Krivonos 1983). One 
easily checks their consistency with the dynamical equations (7). Because of the reality 
of q f ,  these relations hold also with the conjugated spinor derivatives. Such constraints 
are well known in D = 4; they define there the simplest representation of N = 2 SUSY, 

the hypermultiplet (Fayet 1976, Sohnius 1978, Sohnius etall981). This correspondence 
can be understood from the fact that N = 4 SUSY in D = 2 and N = 2 SUSY in D = 4 
are related by dimensional reduction. 

The irreducible content of q; is given by eight bosons 
P -  B 

(40 ) "  - q a l s = 8 = 0 ,  

c, = 9- ,95?q ; le= i i=o ,  

+: = - ( q 9 B q - ' ) ; l e = & 0 ,  

x:= ( 9 P t q q - l ) ; l e = & o .  

c2 = GLm9tq;/tI=ti=o 

and eight fermions 

The fields C,, C2 are auxiliary, therefore qf contains on-shell 4 + 4  components that 
exactly coincide with the content of the hypermultiplet. 

The component equations are obtained by a successive action of spinor derivatives 
on (7) with a subsequent extraction of 6, $-independent terms in the resulting 
expression. In this way, we find 

Cl = -(x+qo+-),  

c2 = (x+40$-) -aim Sp(40qo), 

The bosonic sector of the system (10) upon eliminating fermionic fields is described 
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by the equation 

a+(q;'a-qO): = -m2(40q0)! (11 )  

that divides into two independent equations, one of which is the ordinary Liouville 
equation for u(x) = u(x, 8, e ) I e = g = o =  - a  Sp In (4s) (it corresponds to the trace of ( 1  l ) ) ,  
and the other is 

a+Sp(qa'a-q-') = 0. (12) 

In contrast to the standard equation of nonlinear a-model for the principal field on 
the group SU(2), equation (12) has no term with interchanged a, and a-. This difference 
entails some radical consequences. First, equation (12) possesses gauge SU+(2) 0 
SU-( 2 )  symmetry; it is invariant under transformations 

and, as a result, can be explicitly solved: 

g(x)  = gl(x+)&l(x-). (14) 

Secondly, equation (12) and respectively the full system ( 10) are of a non-Lagrangian 
type (at least, in the variables through which they are written here). A more detailed 
discussion of these properties of equation (12) and a method of transforming it to a 
Lagrangian form can be found in our forthcoming paper. 

Equations (6) and (7) possess, by construction, an infinite-parameter symmetry 
with respect to the SU(2) superconformal supergroup G constructed by SA 9 and 
realised via left shifts in the coset space G/H.  A direct calculation yields a realisation 
of G on the N = 4 ss coordinates and SF q t :  

f + ( x * ) ,  l"'(x'), uk*(  x') being, respectively, infinitesimal parameters of conformal, 
local supersymmetric, and local SU,(2) transformations. The coordinate transforma- 
tions (15), when written in terms of complex variables ( * = x * + i ( O * P )  or ((*)+, 
cooincide with those given in (Ademollo et a1 1976b). It is a simple task to check that 
under these transformations the covariant differentials: 

are multiplied by some superfunctions, in accord with the definition of contact SA'S 

(Kac 1977). 
As has been given above, system (6) ,  (7) is equivalent to requiring the curvature 

of the one-form CIFd to vanish. It means that this system can be interpreted as the 
integrability condition for some linear problem in N = 4 ss. The minimal linear set 
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Let us define 'lengthened' spinor derivatives 

v: = 9: +a:, v+a = f3+a +a*,. 
One may easily se: that system (6) ,  (7) is equivalent to the constraints: 

{Vn, vP}={vP,d+p}={vol,vp+}=o* (20) 

All other commutators and anticommutators (except for {VZ, v+p}  which are in fact 
the definition of the 'lengthened' vector derivatives) vanish as a consequence of (20). 
Notice that it is not necessary to know the full set of the structure relations of su( 1, 112) 
when evaluating (20). The operators V Y , v + ,  are given on its graded subalgebra 
{U,  Tgk, Qat, Of} and V f ,  v-, on the conjugated one {U, T,k, e, Qp-}. Though these 
subalgebras do not commute and close on the whole su(1, 112) the only crossing 
anticommutator between them which enters into equations (20) is the following 

{Q+o ,  Q - p }  = 0. 

Clearly, it does not lead one out of the above subalgebras. 

su( 1, 112) and thus has the matrix dimension 4 x 4: 
The simplest linear problem can be written for the fundamental representation of 

v: v = v*,v = 0 (21) 

with V being a row of four complex N = 4 SF'S. Spectral parameters can be introduced 
into (21) as in the N = 0, N = 1, and N = 2 cases (Ivanov and Krivonos I983,1984a, b), 
by a constant right H-transformation of the coset G/H. Since H = SO( 1, 1) x SU(2) in 
the present case, spectral parameters form now a four-dimensional real manifold (they 
can be combined into a real quaternion ho +ih kak). 

A few words concerning the geometric interpretation of equations (6), (7) are to 
the point. Representation (4) can be treated as the dynamically emerging Maurer- 
Cartan equatin for the homogeneous ss SU( 1, 1)2)/SO( 1, 1) xSU(2). This curved ss 
is the N = 4 superextension of the two-dimensional pseudosphere SO( 1,2)/SO( 1, 1). 
Any classic solution of the N = 0 Liouville equation (1) provides a particular parametri- 
sation of this pseudosphere. Analogously, any solution of (6),  (7) specifies a choice 
of parameters on the pseudosupersphere SU( 1, 112)/SO( 1, 1) xSU(2). 

The equations we have constructed yield a realisation of the SU(2) superstring SA 

different from the standard realisation considered by Ademollo et a1 (1976b). Though 
the number of physical components of the N = 4 Liouville supermultiplet coincides 
with that of the basic SU(2) superstring multiplet in the formulation of Ademollo et 
al, these components have essentially different properties with respect to the diagonal 
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automorphism group SU(2). Indeed, the physical bosons in the case of SU(2) super- 
string are SU(2) singlets while in our scheme they form a reducible 1 0 3  SU(2) multiplet. 
Keeping in mind this difference, it seems interesting to quantise system (10) and to 
learn which version of the SU(2) superstring will appear therewith. It may happen, 
e.g., that such a theory is free of the main difficulty of the standard formulation, the 
presence of ghosts in any space-time dimension. To carry out this programme, it would 
be desirable to convert system (10) into Lagrangian form. 

In conclusion, let us stress that the N = 1, N = 2, and N = 4 super-Liouville 
equations are formulated most naturally in terms of real, complex, and quaternionic 
SF’S subjected in the last two cases to proper Grassman analyticity constraints. This 
correspondence can be looked upon as one more argument in favour of a profound 
intrinsic connection between supersymmetries and systems of hypercomplex numbers. 

We cordially thank D A Leites for an enlightening discussion of the structure of contact 
superalgebras. 

Note added. L D Faddeev kindly drew our attention to the fact that equations of type (15) have some 
(singular) Lagrangian even in the original variables. It can be obtained by adding, to the standard u-model 
Lagrangian, the so-called Wess-Zumino term (Wess and Zumino 1974, Novikov 1981). u-models of this 
type are intensively discussed for the last time in literature. For instance, they naturally appear in the 
problem of non-abelian bosonisation (Witten 1984). We now expect that the whole system (13) also possesses 
a Lagrangian which can be constructed via a proper supersymmetrisation of the Wess-Zumino term. A 
more detailed treatment of these problems will be given elsewhere. 
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